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Összefoglalás 

 
A cikk egy új módszert mutat be, melynek segítségével kedvezõbb tulajdonságú keverék -vetületeket kaphatunk az 
eddig ismerteknél. Max Eckert vetületei adták az alapötletet, õ ugyanis úgy készített új vetületeket, hogy két 
korábbi vetület számtani közepét vette. Az ezzel a módszerrel elõállított vetület kedvezõbb tulajdonságú, mint a 
kiindulási vetületek. A vizsgálódásaimból kiderült, hogy általában nem a számtani közép a legkedvezõbb választás.  
A cikkben fõleg az Eckert-féle vetületekre koncentráltam, és azokra a számtani közép helyett tetszõleges konvex 
kombinációt alkalmaztam. Kiderült, hogy így kedvezõbb torzulású vetületeket kaphatunk. 
Az elõzõ esetben a két kiindulási vetület „keverése” minden pontban ugyanolyan arányú volt. Mivel két vetület 
közül az egyik általában kedvezõbb tulajdonságokat mutat az Egyenlítõ környékén, míg a másik a pólusok 
környékén, ezért kézenfekvõ az ötlet, hogy a „keverés” aránya a szélesség függvényében változzon. Azaz az 
Egyenlítõ környékén nagyobb súlyt kapjon az a vetület, ami ebben a régióban kedvezõbb, míg a pólusok környékén 
inkább a másik érvényesüljön. Ezzel a módszerrel jelentõsen javíthatók a vetületet jellemzõ teljes torzultsági 
mérõszámok értékei a kiindulási, illetve az eredeti Eckert-vetületekhez képest. 
 
 
1 The new method 
 
In the following we introduce a new method of producing projections with favorable 
properties. The basic idea dates back to Eckert. Using two known projections he obtained a 
new one by taking the arithmetic mean of equations of the two original projections. We can 
improve this if we replace the arithmetic mean by one of its generalizations, the convex 
linear  combination. 
 
1.1 Convex linear combinations 
 
The basic concept used in this paper is the following:  
Definiton. Given real numbers nxxx ,...,, 21 and nonnegative numbers Rppp n ∈,...,, 21  with 
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is called a convex linear combination of nxxx ,...,, 21 . 
The word 'convex' is in the expression because this number is always between the minimum 

and maximum of the given numbers. (If we have vectors n
i Rx ∈ , then s is in the convex 

hull of these.) 



 

 

 

This concept is going to be useful when we substitute equations of projections for the ix . 
Theoratically, it is possible to 'mix' more projections to get a new, better one, but in this 
paper we are going to discuss only the case of two. So let us take a closer look at convex 
combinations of two numbers. 
Assume that we have real numbers x and y, and let 10 ≤≤ p . Then our convex 

combination takes the form 
( ) .1 yppxs −+=  
 

If we think of x and y as points X and Y of the number line, then the corresponding point S 
has the following property: 

p
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This means that S subdivides the segment XY in ratio (1-p) : p. 
(If p=0 then s=y, and if p=1 then s=x.) So this little trick enables the two factors to have 
different effect on the output, which is not the case with the simple arithmetic mean. 
 
1.2 Mixing independent of latitude 
 
Improving Eckert's idea we form the convex combination of two given projections. That is, 
given 10 ≤≤ p  and equations of projection ( ) ( )λϕλϕ ,,, 11 yx  and ( ) ( )λϕλϕ ,,, 22 yx  we take 
the following new equations: 

( ) ( ) ( ) ( )λϕλϕλϕ ,1,, 21 xpxpx ⋅−+⋅=  
( ) ( ) ( ) ( )λϕλϕλϕ ,1,, 21 ypypy ⋅−+⋅= . 

 
We expect this to have more favorable distortions than the original ones. In the next section 
we introduce an additional, very natural 'twist' to it. 
 
1.3 Mixing dependent on latitude 
 
Let us assume that we have two projections. Usually, on certain latitudes one will be better 
whereas elsewhere we would prefer the other. This leads to the idea of varying the weight p 
by latitude. Everywhere, we will try to assign a higher weight to the more favorable 
projection, which will therefore have a bigger influence on the outcome. Let us illustrate 
this on an example. 
 
One obtains Eckert's V. projection by taking the arithmetic mean of the equations of the 
Mercator-Sanson projection and the Plate Carrée. Let the equations of the Mercator-Sanson 
projection be 

( ) ( )λϕλϕ ,,, MSMS yx  
and those for the Plate Carrée, 

( ) ( )λϕλϕ ,,, PCPC yx . 



 

 

 

Then the equations of Eckert's V. projection are 

( ) ( ) ( )λϕλϕλϕ ,
2

1
,

2

1
, MSPCE xxx ⋅+⋅=  

( ) ( ) ( )λϕλϕλϕ ,
2

1
,

2

1
, MSPCE yyy ⋅+⋅= . 

As MSy and PCy  are the same, any combination will still give the same result. (For the 

opposite case see section 1.4 below.) So we will concentrate on the x-coordinates. 
Near the Equator, Plate Carrée is favorable whereas near the poles Mercator-Sanson is. 
Therefore at y=0° (on the Equator) we take 

( ) ( ) ( )λλλ ,00,01,0 °⋅+°⋅=° MSPC xxx  
At the North Pole (y=90°) we define the new projection as 

( ) ( ) ( )λλλ ,901,900,90 °⋅+°⋅=° MSPC xxx . 
Of course between the two extremes there has to be a continuous transition. For example 
midway through, at y=45°, we will define 

( ) ( ) ( )λλλ ,45
2

1
,45

2

1
,45 °⋅+°⋅=° MSPC xxx . 

The simplest way to obtain such a transition is to vary the weight p linearly: 

( ) ( ) ( )λϕϕ
π

λϕϕ
π

λϕ ,
2

1,
2

, PCMS xxx ⋅




 −+⋅= . 

Here and from now on we use radian notation for the angle ϕ. It is easy to check that for 
ϕ=0°, 45°, 90° we get the previous equations. 
Note that on all latitudes we formed a convex linear combination of the two projections, 
only the weight varied.1 More generally we can take any two projections 1x and 2x , and a 

function [ ]1,0
2

,
2

: →
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
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p  as mixing function and define 

( ) ( ) ( ) ( )λϕϕλϕϕλϕ ,)(1,)(, 21 xpxpx ⋅−+⋅=  

We need not assume neither p(0)=0 nor 1
2

=




π

p . But it is convenient to assume that p is 

differentiable. The reason is that this way one automatically gets differentiable curves as 
images of meridians (provided that the original projections had this property). For example, 
this is not the case with the Érdi-Krausz projection. 
 
1.4 When the y-equations differ 
 
The above property enables our method to correct disadvantageous properties of the Érdi-
Krausz projection. We will only sketch the idea here. The main objection against this 
projection is that along the 60th latitude the images of meridians are broken. The reason 

                                                 
1 For more on this example, see section 3.2 below. 



 

 

 

why is that the two projections are patched together along this line. To repair this with only 
a slight modification of projection properties, one can do the following. Choose a transition 
zone near the 60th latitude, say the zone between the 50th and 70th latitudes. Outside this 
zone we won't change the original projection. Inside, mix the two projections according to 
the previous section; choose the mixing function so that on the 50th latitude only the 
Mercator-Sanson projection prevails and on the 70th, the Mollweide projection does. 
Between these boundary latitudes, define some continuous transition. 
There is, however, an additional problem here. Let the equations of the Mercator-Sanson 
projection be 

( ) ( )ϕλϕ MSMS yx ,,  
and those for the Mollweide projection: 

( ) ( )ϕλϕ MM yx ,, . 
For the 60th meridian to have the same length in the two projections, recall that we have to 
multiply Mx  and My  by certain constants. After this, MSy  and My are different functions. 
Thus it does matter what weigths we use to combine them. The simplest case is when we 
use the same mixing function as for the x-coordinates. That is, the resulting point P* will 
have coordinates 

( ) ( )( ) .),()(1),()();,()(1),()(* λϕϕλϕϕλϕϕλϕϕ MMSMMS ypypxpxpP −+−+  
In this case P* is on the segment connecting the original points MSP  and MP . 
One may also use two different combinations for the two coordinates. On figure 1 we 

illustrated the case when 
3
1=xp and 

4
3=yp . 

 
 
 
 
 

Figure 1. When the y-equations differ 
 
In general we can write 

( ) ( ) ( ) ( )( ) ( )λϕϕλϕϕλϕ ,1,, MxMSx xpxpx ⋅−+⋅=  
( ) ( ) ( ) ( )( ) ( )λϕϕλϕϕλϕ ,1,, MyMSy ypypy ⋅−+⋅=  

Of course the method can be applied to any other pair of projections. One can also 
make xp and yp depend on the longitude λ. If xp and yp are independent of λ then the 

combination of two cylindrical projections is again cylindrical. 
2 Applications to azimuthal projections 
 
I will show how the method works for azimuthal projections, because here it is simple to 
carry out the calculations. To compare projections we will use mean square errors. In this 
paper we use only the original Airy, the modified Airy, and the Airy-Kavrayskiy criterion 
for this aim. It is well known that some of the azimuthal projections project only the open 



 

 

 

hemisphere. So in our calculations of mean square errors, we take into consideration only 
the region T between the pole and latitude 5°. 
Let us see the formulae. In general, the expression for the mean square error E is 

∫=
T

dT
T

E ε
µ )(

12  

where µ(T) denotes the area of T and ε is one of criteria εAO, εAM and εAK. For our region, 
this takes the form 

( ) ∫∫⋅
°−

=
T

ddE λϕε
π 5sin12

12  

Our projection is azimuthal, so 
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In the case of azimuthal projections, mixing means mixing of functions of radius of 
parallels. We will illustrate the method on an example. 
 
2.1 Mixing of Lambert azimuthal equal-area and stereographic projections 
 
Let us consider the Lambert equal-area and the stereographic projections with functions of 
the radius of parallels 

21 sin2)( ββ =q    and   22 2)( ββ tgq =  
 
2.1.1 Constant mixing function 
 
First we consider the case when the mixing function is constant (independent of latitude), 
that is, 

pp =)(ϕ  
Then the function of radius of parallels of the new projection becomes 

( )
22

12sin2)( βββ tgppq −+=  

At each point the stereographic projection has distortion of area 1≥τ  and the Lambert 
projection is equal-area. Thus all their convex combinations also have 1≥τ . This implies 
EAM = EAO. In the following we use EAO and EAK to compare our projections and to find an 
optimal p. 
The mean square errors of our original two projections are 
 

 EAO EAK 
Lambert equal-area 2.268183 1.276001 
Stereographic 5.862292 2.552019 

 



 

 

 

Our calculations showed that p=0.813 minimizes EAO at EAO =1.825473. EAK takes on its 
minimum value 1.112005 at p=0.8345. In both cases these values are far better than those 
in the table. 
 
2.1.2 Linear mixing function 
 
We hope for further improvement by using a linear mixing function (see also section 1.3). 
That is, we assume BAp += ϕϕ )( . As we know that 10 ≤≤ p , and we are interested only 

in a hemisphere (that is,
2

0
πϕ ≤≤ ), we can substitute ϕ

π
2=x . This allows us to look for 

the optimal mixing function in the form 
BAxp +=)(ϕ . 

Note that now we have a function [ ] [ ]1,01,0: →p . 
For the optimization we used an approximate method (like in the case of the previous 
section too). It is necessary that 1≤A  and 10 ≤≤ B . Otherwise we can think of A and B as 

independent variables. Our task is then to minimize a function RR →2 , with variables A 
and B, on the rectangle [-1,1]× [0,1]. The values of this function are the mean square errors 
corresponding to A and B. In the actual approximation we calculated values on a 40× 40 
grid and fitted contour lines on these data. The optimum turnes out to be 

118.0)( +−= xp ϕ . 
This gives mean square errors EAO =1.759690 and EAK =1.080955. In both cases these are 
better than those values obtained by constant mixing function. 
 
3 Eckertian projections with improved features 
 
In his 1906 paper Eckert published six projections. We will focus on two of them, Eckert 
III and V. These are both arithmetic means of the Plate Carrée and another projection. For 
Eckert III it is the Apian II, and for Eckert V, the Mercator-Sanson projection. More 
precisely, he multiplied both equations by a certain constant to make them preserve the area 
of the Earth. Let us focus first on these 'area constants.' 
 
3.1 The area constants 
 
We inquire into the calculation of these constants.The image of the Earth has two symmetry 
axes in these projections, the Equator and the Prime Meridian. So it is enough to deal with 
one quadrant. Before multiplying by the area constant the y-equation is simply 

ϕ=y .     (1) 
Therefore the area of the quadrant is 

( )∫ °=
2

0

180,

π

ϕϕ dxT . 



 

 

 

(This formula is valid always when (1) holds.) Taking the radius of the Earth as a unit, one-

fourth of the surface area of the Earth is ππ ==
4

4
A . The ratio of these two, 

T
A

, is exactly 

the square of the area constant (because one multiplies both x and y by it). Thus 

( )
.

180,
2

0

2

∫ °

=
π

ϕϕ

π

dx

c      (2) 

 
3.2 Projections of type Eckert V 
 
3.2.1 Constant mixing function 
 
In this case we have two cylindrical projections (Plate Carrée and Mercator-Sanson), and 
we mix them with a constant function ( pp =)(ϕ ). The equations of the new projections 
are the following: 

( )ϕλ cos1 ppx +−⋅=  
ϕ=y . 

These form a family of projections. If p=0 then we get the Plate Carrée, if p=1, the 

Mercator-Sanson projection; and if 
2
1=p , Eckert's V projection. 

The area constant is the following: 
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Similar approximate calculations show that the following values of p give the optimal mean 
square errors in our three cases: 
 

 optimal p mean square error 
EAO 0.425 0.931864 
EAM 0.433 0.942006 
EAK 0.334 0.284857 

All these values are even better than those for the Eckert V projection. Figure 2 shows this 
for the case of the Airy-Kavrayskiy criterion. 

 
 



 

 

 

 
 
 

Figure 2. Mean square errors EAK for different values of p 
 
 
3.2.2 Linear mixing function 
 
Now the mixing function has the following form: 

BAxp +=)(ϕ  

where  ϕ
π
2=x . So the equations of projection are 

λϕ
π

ϕϕ
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 += BABAx

2
1cos

2  

ϕ=y . 
Following Eckert, we will have to multiply by another area constant. It is of the form 

,
),(1,5 BAT

c
π

=  

where T5,1 is a linear function of A and B.2 
To narrow down the possible mixing functions to a 1-parameter family, we imposed an 
additional condition on them, namely that their average (integral) be the same as the 
optimal constant in the previous section. We obtained the following optimums: 
 

 A B mean square error 
EAO 0 0.425 0.931864 
EAM 0 0.433 0.942006 
EAK 0.037 0.3155 0.284355 

 
The data show that there is no improvement when we measure errors according to EAO or 
EAM. 
 
3.2.3 Cubic mixing function  
 

                                                 
2 For the actual expression we need the following integral: 
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By standard integration methods, one gets  
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We turn now to the case when we mix the two projections by a cubic function. For 
concreteness, we will consider affine images of the function3 3x2 - 2x3. These are of the 
form 

.23)( 32 ExDxDp +−=ϕ  
The equations of projection are: 

( ) ( )[ ]λϕ ExDxDExDxDx +−−++−= 3232 231cos23  
ϕ=y  

where ϕ
π
2=x . 

The corresponding area constant is 

,
),(3,5 EDT
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where, similarly to the previous section, one has 
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Again, we take into account only those functions whose integrals agree with the previously 
found optimal constants. The results are in the following table. 
 

 D E mean square error 
EAO 0 0.425 0.931864 
EAM 0 0.433 0.942006 
EAK 0.0077 0.3301 0.282860 

 
Just like with linear functions, we could improve only EAK. 
 
3.3 Projections of type Eckert III 
 
We turn our attention now to the closely related Eckert III projection. Thus, we will mix the 
Plate Carrée and Apian's II. projection. The equations of Eckert's III. projection are: 

λ
π

ϕ 





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2

2411
2

1
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ϕ=y  . 
It has area constant 
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3 The function f(x)=3x2-2x3  has the following favorable properties: 

f(0)=0, f(1)=1, f '(0)=0, f '(1)=0 and [ ] [ ]1,01,0: →f  is a bijection. 



 

 

 

3.3.1 Constant mixi ng function 
 
Mixing the two original projections with a constant function ( ) pp =ϕ  we get the following 
equations for the new projection: 

λ
π

ϕ 





 −+−= ppx 11

2

24  

ϕ=y  . 
 
These form a family of projections again. If p=0$ then we get the Plate Carrée, if p=1, the 

Apian II, and if 
2
1

=p , Eckert's III. projection. 

In the case of constant mixing function the area constant is: 
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2 ππ pp
c

−+
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The calculations show that the following values of p are optimal. 
 

 optimal p mean square error 
EAO 0.614 0.964716 
EAM 0.627 0.976775 
EAK 0.566 0.284335 

 
All these values are better than those for the Plate Carrée, Apian II, and the Eckert III 
projection. 
 
 
 
3.3.2 Linear mixing function 
 
Now the mixing function is the following: 

BAxp +=)(ϕ  

where ϕ
π
2=x . So our equations are 
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ϕ=y  . 
Using equation (2) (similarly to the previous section) we get the area constant 
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Here too we look for the optimal function only in a special family of linear 

functions (as in section 3.2.2). The results are similar to those for projections of type Eckert 
V. If we use the Airy-Kavrayskiy criterion then the optimal linear mixing function is better 
than constant functions. The best choise is the function with A=0.052 and B=0.54. In this 
case EAK =0.283942. 
 
3.3.3 Cubic mixing function 
 
Again, we examine the same cubic mixing functions as in the case of projections of type 
Eckert V. The general formula of these functions is 

,23)( 32 ExDxDp +−=ϕ  

where ϕ
π
2=x . 

 
In this case the area constant is 
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Similar to previous sections we obtain that only in the case of Airy-Kavrayskiy criterion 
there is a better cubic function than constant functions. But we find the surprising result that 
this optimal cubic function is less favorable than the optimal linear mixing function. The 
optimal function has parameters D=0.0032 and E=0.5644. In this case EAK=0.284325. 
 
 
 
 
 
 
 
 
 

Figure 3. Projection of type Eckert III, mixed with the optimal constant mixing function 
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