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COMBINATION

JUHASzZ PETER

Osszefoglalas

A cikk egy (j modszert mutat be, melynek segitségével kedvezGbb tulajdonsagu keverék-vetilleteket kaphatunk az
eddig ismerteknél. Max Eckert vetlletei adtdk az alapétletet, & ugyanis Ggy készitett (j vetlleteket, hogy két
korabbi vetilet szamtani kozepét vette. Az ezzel a modszerrel eldallitott vetilet kedvezdbb tulajdonsagd, mint a
kiindulasi vetuletek. A vizsgal 6dasaimbdl kider tlt, hogy altaldban nem a szamtani kdzép a |legkedvezobb vélasztas.
A cikkben féleg az Eckert-féle vetlletekre koncentraltam, és azokra a szamtani k6zép helyett tetszoleges konvex
kombinaci6t alkalmaztam. Kider Ult, hogy igy kedvezdbb torzul &st vetiil eteket kaphatunk.

Az €ldz0 esetben a két kiindulasi vetiilet ,, keverése” minden pontban ugyanolyan aranyu volt. Mivel két vetilet
kozll az egyik altaldban kedvezbbb tulajdonsdgokat mutat az Egyenlitd kornyékén, mig a masik a polusok
kornyékén, ezért kézenfekvd az otlet, hogy a , keverés’ aranya a szélesség fuiggvényében valtozzon. Azaz az
Egyenlitd kornyékén nagyobb stlyt kapjon az a vetilet, ami ebben a régidban kedvez8bb, mig a p6lusok kornyékén
inkdbb a masik érvényeslljon. Ezzel a modszerrel jelentdsen javithatok a vetiiletet jellemzd teljes torzultsagi
mérszamok értékei a kiindulési, illetve az eredeti Eckert-vetiiletekhez képest.

1 The new method

In the following we introduce a new method of producing projections with favorable
properties. The basic idea dates back to Eckert. Using two known projections he obtained a
new one by taking the arithmetic mean of equations of the two original projections. We can
improve this if we replace the arithmetic mean by one of its generalizations, the convex
linear combination.

1.1 Convex linear combinations

The basic concept used in this paper is the following:
Definiton. Given real numbers X,,X, ..., X, and nonnegative numbers p;, p,,..., p,1 R with

p. =1, the number

Qo

1

s=a pX
iscalled aconvex linear combination of X, X,..., X, -
Theword 'convex' isin the expression because this number is aways between the minimum
and maximum of the given numbers. (If we have vectors x T R", then sisin the convex
hull of these.)



This concept is going to be useful when we substitute equations of projectionsfor the x; .
Theoraticdly, it is possible to 'mix" more projections to get a new, better one, but in this
paper we are going to discuss only the case of two. So let us take a closer ook at convex
combinations of two numbers.

Assume that we have real numbers x and y, and let O£ p£1. Then our convex
combination takesthe form

s= px+(1- p)y.

If we think of x and y as points X and Y of the number line, then the corresponding point S
has the following property:

X9_1-p

sl p
This means that S subdivides the segment XY in ratio (1-p) : p.

(If p=0then s=y, and if p=1then s=x.) So this little trick enables the two factors to have
different effect on the output, which is not the case with the simple arithmetic mean.

1.2 Mixingindependent of latitude

Improving Eckert's idea we form the convex combination of two given projections. That is,
given O£ p £ 1 and equations of projection x1(| |l ) yl(i | ) and x2(1 | ),yzﬁ | ) we take
the following new equations:

X( 1) =P 1 )+(- p)o( 1)

Vi )=l )+ p)sar).

We expect this to have more favorable distortions than the original ones. In the next section
we introduce an additional, very natural 'twist' to it.

1.3 Mixing dependent on latitude

L et us assume that we have two projections. Usualy, on certain latitudes one will be better
whereas elsewhere we would prefer the other. Thisleadsto theidea of varying the weight p
by latitude. Everywhere, we will try to assign a higher weight to the more favorable
projection, which will therefore have a bigger influence on the outcome. Let us illustrate
this on an example.

One obtains Eckert's V. projection by taking the arithmetic mean of the equations of the
Mercator-Sanson projection and the Plate Carrée. Let the equations of the Mercator-Sanson

projection be
Xusi 1 ) Yusi 1)

chG | )!yPC(j y )

and those for the Plate Carrée,



Then the equations of Eckert'sV. projection are

el )= 5%l 1 )45 50 1)

el ) =2 e Ll ).

As Yysad Y. are the same, any combination will still give the same result. (For the
opposite case see section 1.4 below.) So we will concentrate on the x-coordinates.
Near the Equator, Plate Carrée is favorable whereas near the poles Mercator-Sansonis.
Therefore at y=0° (on the Equator) we take
X(0°,1) = 155 (0°,1 )+ 05%¢,6 (0,1 )

At the North Pole (y=90°) we define the new projection as

x(90°,1 ) = 0% (90°,1 ) +13%,,5(90°,1 ) .
Of course between the two extremes there has to be a continuous transition. For example
midway through, at y=45°, we will define

x(45°| ):%xxpc(45°,| )+%>«MS(45°,| ).
The simplest way to obtain such atransition isto vary the weight p linearly:
‘ 2. a 2.8 .
XG | ):_J XXMS(] i )+§[- =] QXXPC(I | )
p e P o

Here and from now on we wse radian notation for the angle j . It is easy to check that for
j =0°, 45°, 90° we get the previous equations.
Note that on al latitudes we formed a convex linear combination of the two projections,

only the weight varied." More generally we can take any two projections x and x,, and a
ep pu
g 2'24

® [0,1] asmixing function and define
X 1)=p0 )5 1)+ G )l 1)

We need not assume neither p(0)=0 nor p{:a%g:l. But it is convenient to assume that p is
elg

differentiable. The reason is that this way one automatically gets differentiable curves as

images of meridians (provided that the original projections had this property). For example,

thisis not the case with the Erdi-Krausz projection.

function p:

1.4 When the y-equations differ

The above property enables our method to correct disadvantageous properties of the Erdi-
Krausz projection. We will only sketch the idea here. The main objection against this
projection is that along the 60" latitude the images of meridians are broken. The reason

! For more on this example, see section 3.2 below.



why is that the two projections are patched together along this line. To repair this with only
adlight modification of projection properties, one can do the following. Choose atransition
zone near the 60" latitude, say the zone between the 50" and 70" latitudes. Outside this
zone we won't change the original projection. Inside, mix the two projections according to
the previous section; choose the mixing function so that on the 50™ Iatitude only the
Mercator-Sanson projection prevails and on the 70", the Mollweide projection does.
Between these boundary | atitudes, define some continuous transition.

There is, however, an additional problem here. Let the equations of the Mercator-Sanson

projection be

Xs o1 ) Vsl )
and those for the Mollweide projection:

% 21 ) v )
For the 60" meridian to have the same length in the two projections, recall that we have to
multiply x,, and vy, by certain constants. After this,y,,s andy,, are different functions.
Thus it does matter what weigths we use to combine them. The simplest case is when we

use the same mixing function as for the x-coordinates. That is, the resulting point P~ will
have coordinates

P (PG )%usl 1)+ (- PG )% 1 ); PG Vs 1) +(L- G )W G 1))
Inthis case P’ ison the segment connecting the original pointsP,. and PR, .

One may aso use two different combinations for the two coordinates. On figure 1 we

illustrated the case when p, :%and P, :%

Figure 1. When they-equations differ

In general we can write

X[ 1) = ) 1)+ pl o1

yG | ): py(j )XYMSG i )+(1' pyG »Xyrvl(l | )
Of course the method can be applied to any other pair of projections. One can aso
make p, and p, depend on the longitude |. If p, and p,are independent of | then the
combination of two cylindrical projectionsisagain cylindrical.
2 Applicationsto azimuthal projections

| will show how the method works for azimutha projections, because here it is smple to
carry out the calculations. To compare projections we will use mean square errors. In this
paper we use only the original Airy, the modified Airy, and the Airy-Kavrayskiy criterion
for thisaim. It iswell known that some of the azimuthal projections project only the open



hemisphere. So in our calculations of mean sguare errors, we take into consideration only
theregion T between the pole and latitude 5°.
Let usseetheformulae. In genera, the expression for the mean square error Eiis
pP=_L1_ oedT
mT) ;
where m(T) denotes the area of T and eis one of criteria exo, €av and eak. For our region,
thistakesthe form

1 :
E*= - xq@ed d
2pi1— S|n5°5 T

Our projection is azimuthal, so
) l 90° 90°
E° = xaedi =1.0954771aedi
2 l-sins) P 0% o9

In the case of azimutha projections, mixing means mixing of functions of radius of
paralles. Wewill illustrate the method on an example.

2.1 Mixingof Lambert azimuthal equal-area and ster eogr aphic projections

Let us consider the Lambert equal -area and the stereographic projections with functions of
the radius of parallels
q,(b)=2sin; ad q,(b)=2tg3

211  Constant mixing function

First we consider the case when the mixing function is constant (independent of latitude),
that is,
PG )=p

Then the function of radius of parallels of the new projection becomes

q(b) =2psin> +2(1- p)tg>
At each point the stereographic projection has distortion of area t 3 1 and the Lambert
projectionisequal -area. Thusall their convex combinationsalso havet 3 1. Thisimplies
Eav = Eao- In the following we use Exq and Exx to compare our projections and to find an
optimal p.
Trr:e mearil sguare errors of our original two projections are

EAO EA K
Lambert equal -area 2.268183 1.276001
Stereographic 5.862292 2552019




Our calculations showed that p=0.813 minimizes Exp a Exp =1.825473. Exx takes on its
minimum value 1.112005 at p=0.8345. In both cases these values are far better than those
inthetable.

212 Linear mixing function

We hope for further improvement by using a linear mixing function (see also section 1.3).
That is, weassume p(j )=A] +B.Asweknow that O£ p £1, and we are interested only

in a hemisphere (that is,0£j E%), we can subgtitute x :pgj . This allows us to look for

the optimal mixing function in the form
p( )=Ax+B.
Note that now we have afunction p: [01] ® [0,1] .
For the optimization we used an approximate method (like in the case of the previous
section too). It is necessary that |A|£1 and O£ B £ 1. Otherwise we can think of Aand B as

independent variables. Our task is then to minimize a function R? ® R, with variables A
and B, on the rectangle [-1,1]" [0,1]. The values of this function are the mean square errors
corresponding to A and B. In the actua approximation we calculated values on a 40" 40
grid and fitted contour lines on these data. The optimum turnes out to be

p( )=-0.18x+1.

This gives mean square errors Exy =1.759690 and Exx =1.080955. In both cases these are
better than those values obtained by constant mixing function.

3 Eckertian projectionswith improved features

In his 1906 paper Eckert published six projections. We will focus on two of them, Eckert
Il and V. These are both arithmetic means of the Plate Carrée and another projection. For
Eckert 111 it is the Apian Il, and for Eckert V, the Mercator-Sanson projection. More
precisely, he multiplied both equations by a certain constant to make them preserve the area
of the Earth. Let usfocusfirst on these ‘area constants.’

3.1 Theareaconstants

Weinquireinto the calculation of these constants.The image of the Earth has two symmetry
axes in these projections, the Equator and the Prime Meridian. So it is enough to deal with
one quadrant. Before multiplying by the area constant they-equation is simply

y=j . €]
Therefore the area of the quadrant is

T=ox( .180)dj .

Oo, [N



(Thisformulaisvalid aways when (1) holds.) Taking the radius of the Earth as a unit, one-
_4p _

fourth of the surface area of the Earthis A= il p . Theratio of thesetwo, ?A , isexactly
the square of the area constant (because one multiplies both x and y by it). Thus

?=__P )

2

2@x(j 180°) d
0

3.2 Projectionsof type Eckert V
321 Constant mixing function

In this case we have two cylindricd projections (Plate Carrée and Mercator-Sanson), and
we mix them with a constant function (p(j ) = p ). The equations of the new projections
arethefollowing:
x=1 %1- p+pcog )
y=j -
These form a family of projections. If p=0 then we get the Plate Carrée, if p=1, the
Mercator-Sanson projection; and if p :% , Eckert'sV projection.

The area constant is the following:
2 _ p 1 1

:[(l- p)i + psinj 17 @- p)z+op

D
olL- p+ pcosj )p dj
0

1
Ja-pe+p

Similar approximate calculaions show that the following values of p give the optimal mean
sguare errorsin our three cases:

c=

optimal p mean square error
Exo 0.425 0.931864
Eam 0.433 0.942006
Eak 0.334 0.284857

All these values are even better than those for the Eckert V projection. Figure 2 shows this
for the case of the Airy-Kavrayskiy criterion.



Figure 2. Mean square errors E for different values of p

322 Linear mixing function

Now the mixing function has the following form:
p( )=Ax+B

where x = 3j . So the equations of projection are
p
x= &2} +8%og +1- 3% +BY]
e p 2 ep a

y=j -
Following Eckert, we will have to multiply by another area constant. It is of the form

c=]-—P
T..(AB)

where Ts ; isalinear function of Aand B.?

To narrow down the possible mixing functions to a Iparameter family, we imposed an
additional condition on them, namely that their average (integral) be the same as the
optimal constant in the previous section. We obtai ned the following optimums:

A B mean sguare error
Exo 0 0.425 0.931864
Eam 0 0.433 0.942006
Eak 0.037 0.3155 0.284355

The data show that there is no improvement when we measure errors according to Exg Or
EAM.

323  Cubic mixing function

2 For the actual expression we need the following integral:
o2

To.(AB)= pxLA—=] +Bocosj +1- CA—j +Bodj
e P 2] e p I}

By standard integration methods, one gets
® p? 06 @ p?d 2
Ts1(AB)= ép- b 2:A+ (g\p - p_:B+p_
4 %) 7] 2



We turn now to the case when we mix the two projections by a cubic function. For
concreteness, we will consider affine images of the function® 3x* - 2x°. These are of the
form
p(i )=3Dx*- 2D X’ +E .
The equations of projection are:
x=[BDx?*- 2D % +E)cosj +1- (3D x*- 2D x*+EJ
y=j

c= /L ,
T52(D, E)

where, similarly to the previous section, one has
2 2 2

& p 24969§p0p

where X :Ej .
p

The corresponding area constant is

T.,(D,E)=¢p- —+—- —iD+Cl- —TE+—.
Again, we take into account only those functions whose integrals agree with the previoudy
found optimal constants. The results arein the following table.

D E mean square error
Eno 0 0.425 0.931864
Eam 0 0.433 0.942006
Eak 0.0077 0.3301 0.282860

Just like with linear functions, we could improve only Ex.
3.3 Projectionsof type Eckert I11

We turn our attention now to the cl osely related Eckert 111 projection. Thus, we will mix the
Plate Carrée and Apian's 1. projection. The equations of Eckert's|l1I. projection are:

1 — .
x:—gi+ 1- % 9
2¢ T g

y=]
It has area constant
4

Jp(4+p)

3 The function f(x)=3x%-2x* has the following favorable properties:
f(0)=0, f(1)=1, '(0)=0, f'(1)=0and f:[01]® [03] isabijection.



331 Constant mixi ng function

Mixing the two original projections with a constant function p(i ) = p weget thefollowing
equations for the new projection:

X = (i:aep 1- % +1- pgl
e P [
y=j
These form afamily of projections again. If p=03$ then we get the Plate Carrée, if p=1, the

Apianll, andif p :% , Eckert'sll. projection.

In the case of constant mixing function the area constant is:
1

A PE+(- p)2

The calculations show that the following values of p are optimal.

c=

optimal p mean square error
Exo 0.614 0.964716
Eam 0.627 0.976775
Eax 0.566 0.284335

All these values are better than those for the Plate Carrée, Apian Il, and the Eckert Il1
projection.

332 Linear mixing function

Now the mixing function is thefollowing:
p( )=Ax+B

where X :pgj . So our equations are
x=&nZ +of1 421 &2y +8Y
e p o P ep al

y=i
Using equation (2) (similarly to the previous section) we get the area constant

=P
T..(AB)



where

p € A p o U
AB)="_g- 2. &- E 3.
T..(AB)= 281 6 ? 45 4

Here too we look for the optima function only in a specia family of linear
functions (asin section 3.2.2). The results are similar to those for projections of type Eckert
V. If we use the Airy-Kavrayskiy criterion then the optimal linear mixing function is better
than constant functions. The best choise is the function with A=0.052 and B=0.54. In this
case En=0.283942.

333  Cubicmixing function

Again, we examine the same cubic mixing functions as in the case of projections of type
Eckert V. The general formula of these functionsis

pi )=3Dx*- 2DX*+E,

where X :Ej .
p

In this case the areaconstant is

c= fL ,
T35(D.E)

T.0.B)=pa- Lp+®. 1%
' gz 240 e8 2g g

Similar to previous sections we obtain that only in the case of Airy-Kavrayskiy criterion
there is a better cubic function than constant functions. But we find the surprising result that
this optimal cubic function is less favorable than the optimal linear mixing function. The
optimal function has parameters D=0.0032 and E=0.5644. In this case E;«=0.284325.

where

Figure 3. Projection of type Eckert I11, mixed with the optimal constant mixing function
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